Privacy Preserving Data Mining: Survey of Approaches

ثبت نشده
چکیده

Privacy is one of the most important properties of an information system must satisfy, in which systems the need to share information among different, not trusted entities, the protection of sensible information has a relevant role. Thus privacy is becoming an increasingly important issue in many data mining applications. For that privacy secure distributed computation, which was done as part of a larger body of research in the suppression, cryptography, randomization, sumarization has achieved remarkable results. These results were shown using generic constructions that can be applied to any function that has an efficient representation as a circuit. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when data mining techniques are used in a malicious way. Privacy preserving data mining algorithms have been recently introduced with the aim of preventing the discovery of sensible information. In this paper we will describe the implementation of suppression, cryptography, randomization, sumarization in that data mining for privacy preserving.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of Cryptographic and Non-cryptographic Techniques for Privacy Preservation

Cryptography is to become familiar with the requirement of large, complex, information rich data sets for it’s privacy preservation. The privacy preserving data mining has been generated; to go through the concept of privacy in data mining is hard. Several algorithms and approaches are being generated theoretically, but practically it is hard. Privacy in data mining can be achieved through seve...

متن کامل

Survey on Privacy Preserving Data Mining

Data mining is the process of extraction of data from large database. One of the most important topics in research community is Privacy preserving data mining (PPDM). Privacy preserving data mining has become increasingly popular because it allows sharing of privacy sensitive data for analysis purposes. It is essential to maintain a ratio between privacy protection and knowledge discovery. To s...

متن کامل

Privacy-Preserving Distributed Data Mining Techniques: A Survey

In various distributed data mining settings, leakage of the real data is not adequate because of privacy issues. To overcome this problem, numerous privacy-preserving distributed data mining practices have been suggested such as protect privacy of their data by perturbing it with a randomization algorithm and using cryptographic techniques. In this paper, we review and provide extensive survey ...

متن کامل

k -Anonymous Data Mining: A Survey

Data mining technology has attracted significant interest as a means of identifying patterns and trends from large collections of data. It is however evident that the collection and analysis of data that include personal information may violate the privacy of the individuals to whom information refers. Privacy protection in data mining is then becoming a crucial issue that has captured the atte...

متن کامل

A General Survey of Privacy-Preserving Data Mining Models and Algorithms

In recent years, privacy-preserving data mining has been studied extensively, because of the wide proliferation of sensitive information on the internet. A number of algorithmic techniques have been designed for privacy-preserving data mining. In this paper, we provide a review of the state-of-the-art methods for privacy. We discuss methods for randomization, k-anonymization, and distributed pr...

متن کامل

A Survey of Randomization Methods for Privacy-Preserving Data Mining

A well known method for privacy-preserving data mining is that of randomization. In randomization, we add noise to the data so that the behavior of the individual records is masked. However, the aggregate behavior of the data distribution can be reconstructed by subtracting out the noise from the data. The reconstructed distribution is often sufficient for a variety of data mining tasks such as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015